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Transfer Processes in Fractal Media 

Aiain Le Mehaute 1 

An irreversible process in fractal media involves coupling relation between the 
space and the time. The present note displays how the fractional derivation has 
to be introduced to describe this effect. As a result the law of the chemical 
diffusion to a fractal is given. 
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1. HETEROGENEOUS MEDIA AND CHEMICAL KINETICS 

Heterogeneous media are used widely in the chemical industry. Well-known 
examples include the catalytic cracking of petroleum fractions in fluidized or 
fixed bed reactors, (1-3) the roasting of ores, and the use of porous 
electrodes ~4'5) in electrochemical power sources. The detailed chemical and 
physical processes that occur at the micro level inside these complex 
heterogeneous media are not accessible to experimental observation below a 
certain scale that depends upon the methods of observation. The 
microkinetics of the local processes must necessarily be inferred from macro- 
level observations on the operating units and from data obtained in idealized 
model experiments in conjunction with sets of parameters that characterize 
the heterogeneous medium and various other assumptions regarding the 
relationships between these parameters and the physicochemical properties of 
the chemical system. ~1'2) 

The traditional descriptions of heterogeneous media rely on the particle 
size and shape distributions, the pore size distributions, the surface areas, 
and the tortuosity of the media, t6'7) each of which is defined in terms of 
unique experimental data and particular model assumptions. A problem with 
these characteristics is that they are model and experimental method- 
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dependent. Thus, they do not represent independent geometric system 
invariants for any particular material. It is reasonable, therefore, to inquire 
whether a more representative and a more universally applicable method can 
be developed to describe the geometry of heterogeneous media. 

Mandelbrot has provided suggestive evidence that a wide class of 
heterogeneous media may be fractal in nature. (8) This conjecture was 
explored in earlier studies, and it was found, for example, that both porous 
electrodes and various cathode materials used in electrochemical energy 
sources could be described as fractals and that the processes occurring in 
these media could be simply related to the fractal characteristics expressed in 
terms of the invariant nonintegral dimensions of the media. ~ 

The successful descriptions thus obtained stimulated further 
investigations into the theoretical relationships between the fractal geometries 
of heterogeneous media and the irreversible processes that may occur in 
these media. 

In approaching such investigations, certain qualitative model 
considerations appeared to be desirable to delimit the scope of the analysis. 
The model considerations may be paraphrased in terms of the following 
questions: 

1. In what sense are heterogeneous media to be considered as fractals? 

2. What is the proper framework within which to describe the rates of 
physicochemical processes in fractal media? 

It is the purpose of this introductory note to address these questions. 
The quantitative developments will be presented in the next section. For 
concreteness, the two questions will be discussed with reference to porous 
electrodes, such as are used in electrochemical energy storage devices. 

Microscopic analyses of the geometric configurations of several 
different electrode materials spanning a wide range of magnifications 
revealed that they all possessed internal random self-similarity, or very 
near ly  so. (9'10) Since self-similar configurations constitute an important class 
of fractals with well-defined nonintegral dimensions, it appeared reasonable 
to consider the porous electrodes to be fractals in the sense of random self- 
similarity, at least as a first-order approximation. 

The second question requires a little more thought. Again, with 
reference to porous electrodes and electrochemical processes, we may begin 
the discussion with a consideration of the irreversible processes at idealized 
interfaces that can be closely realized in laboratory experiments. The rates of 
such processes can be fixed over a wide range of values by the deliberate 
control of the electric system variables (thermodynamic electrochemical 
potential), and since the reactions are carried out on geometrically well- 
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defined interfaces (integral Euclidean geometries), it is possible to determine 
the detailed kinetic and transport parameters associated with the physico- 
chemical processes occurring in these geometries. If  the rate is controlled by 
an experimentally accessible thermodynamic driving force located at a well- 
defined Euclidean interface separating the two media (liquid and solid phases 
in the case of electrochemical processes), the process is called a "transfer 
process" in the sense that both chemical species and energy is transferred 
from one state to another at an interface. Since it occurs at a well-defined 
interface accurately located in space it will be designated as a 6 transfer 
(Fig. 1). By contrast, the transfer process will be designated as a distributed 
transfer in systems where the driving force is not so located in terms of the 
space coordinates (Fig. 2). It is often called transport process. The c~ nomen- 
clature is suggested by the process localization that may be described by a 
Dirac delta function pointing out a discontinuity of the media. 2 

Consider now a particular mechanical transformation of a two-phase 
system with an initially well-defined interface having an integral Euclidean 
dimension: the two phases may be separately subdivided and then intermixed 
in such a manner and to such an extent that the integral dimension of the 
original Euclidean interface disappears. How can be kinetic-geometric 

2 This nomenclature was proposed by Dr. Bro in order to release previous technical distur- 
bances involved by the confusion between the sentence transfer and the sentence transport. 

Interface 

SPATIAL COORDINATE 

Fig. 1. Schematic view of the spatial energy distribution in the case of"fi-transfer" process. 
The spatial resolution is limited by the molecular dimensions and the step of energy is 
controlled by the bulk thermodynamic conditions on both sides of the interface. The arrow 
points out the thermodynamic direction of the irreversible process. 
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Fig. 2. Schematic view of the spatial energy distribution in the case of "distributed transfer" 
process. The spatial distribution is here very extensive only on one side of the interface. The 
arrow points out the thermodynamic direction of the irreversible process. The step of the 
energy on the interface is small with regard to the spatial distribution of the energy. 
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Fig. 3. Schematic view giving the major variables for the irreversible transfer through a 
fractal interface. J(t) is the macroscopic flow. AX(t) is the related thermodynamic force 
located either on both sides of the fractal interface A (c5 transfer), or essentially distributed in 
the bulk B (distributed transfer). 
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relationships obtained on the original Euclidean interface be applied to the 
dispersed phase system? From an operational point of view, the accessible 
parameters on the dispersed system are the bulk intensive (= global) thermo- 
dynamic parameters, not the extensive parameters obtained at the level of the 
local (= micro) geometry where the processes actually occur. Since the 
interface in the dispersed medium is assumed to be a fractal, a hypothesis 
(Fig. 3) is needed in regard to the transfer process on the fractal interface. At 
first, it will be assumed that the transfer process at the fractal interface is a 
s process and that the rate of the process is controlled by the 
homogeneous bulk chemical and thermodynamic factors that are well defined 
to the extent that the geometric properties of the system allow the definition 
of any intensive properties. As will be seen in Section 2, this makes it 
possible to describe the rate of the global process in terms of well-defined, 
independent geometric and kinetic factors. 

Afterward, it will also be assumed (Section 3) that 6 transfer at the 
fractal interface is kinetically controlled by distributed chemical and thermo- 
dynamic factors in the fractal bulk. In that case, the analysis requires a more 
advanced point of view and the physical meaning of the concept of 
separability for the kinetic and geometric factors becomes more complex. 
Meanwhile, the fractal assumptions lead to the analytical solutions of the 
transport properties in the fractal media, to the fractal interface. 

Based on the preceding qualitative model considerations we can now 
proceed to the quantitative analysis of the transfer and transport processes 
that may occur in fractal media. 

2. L INEAR 6 TRANSFER (TEISI MODEL) 

We consider any linear ~5 transfer (see Section 1) on a planar interface 
[A] separating the space into two distinct regions. The linear 6-transfer 
hypothesis means that the following: 

(i) The transfer kinetics of any extensive quantity m through [A] is 
controlled by a step change of the free energy A X ( t )  (intensive ther- 
modynamics variable) at the interface [A ]. It assumes the existence of a 
statistical average energy related to a Poisson distribution of the 
energy.(~2'~3) 

(ii) We consider the case where the relationship between the driving 
force A X ( t )  and the density of flow 0(t) is linear~14): 

1 
(k(t) = - -  A X ( t )  (2.1) 

T 

822/36/5-6-11 
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where 1/z is a kinetic constant derivated from the molecular properties that 
govern the transfer. The rate of entropy production is given by the quadratic 
form(~4): 

a(t) = O(t)AX(t) = I---AxE(t) 

If the area of the planar interface is A, the total macroscopic flow of m, 
J(t), which crosses the interface [A ], is given by 

J(t) = 1 A  AX(t) (2.2) 
T 

The TEISI model r concerns the case where the interface [A] is a fractal 
characterized by a nonintegral Hausdorff-Mandelbrot dimension d. ~s) Each 
of the two regions is assumed to remain at a constant potential in term of the 
free energy. As the result, the driving force across the fractal interface may 
be controlled just as in the case of a planar interface. The relationship 
between the input J(t) and the output ~(t) of the fractal system may be 
described with reference to an equation derived from systems theory~6~: 

J(t) = A(t) * O(t) (2.3) 

where * signifies the convolution (17) between the unknown geometric factor 
A(t) and the density of flow 4(t) that is controlled by the intensive thermo- 
dynamics properties alone. The Laplace transform of (2.3) is 

J(s) = A (s) O(s) (2.4) 

Where the bars signify the Laplace transform, s being the Laplace variable. 
A comparison between (2.2) and (2.4) shows that A(s) is no more than the 
measure of the interface of exchange in the space of Laplace variables. 

In addition, the d-fractal metric of [A] suggests (8) 

A(s) = ~(Dr) N(s) rlDT(S) (2.5) 

D r is the topological dimension of the space of the exchange of energy. 
7(Dr) = (1/2)DTF(1/2)DT/F(1 + Dr/2 ), F( ) being the gamma function, t/(s) 
is the "gauge" used to characterize the interface [A ]. N(s) is the result of the 
measure of the fractal [A] using the "gauge" ~/(s) [from Ref. 8 
N(s) ~d(s)= leo; l o is a macroscopic characteritic length; d is the fractal 
dimension.] 

As a result 
)(s) = N(s) j(s) (2.6) 
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where 
1 

j(s) = T Y(Dr) tlDr(S) AX(s) (2.7) 

is the "gauge" of the flow in the space of the Laplace variable. The scaling 
properties in the Laplace space shall be distinguished from the scaling 
properties in the space of the time. (18'19) 

In order to arrive at the relevant macroscopic kinetic expression, we 
conjecture that (15) 

'~0 N(s) =--,s where e ~ / d - - -  (2.8) 
e0 lo 

l 0 being a characteristic length. 
The validity of this conjecture is supported by the observed agreement 

between experimental results and prediction based on this conjecture. The 
conjecture signifies that r/(s)=)~o/S ~/d, that is to say, (i) the Haussdorff 
content is related to a Laplace variable, and (ii) the "gauge" of uncertainty 
in the space-time rl(t) *d, the inverse Laplace transform of tld(s), is a 
geometrical invariant 20, which means that the geometry is stationnary in the 
time. 

As a result 

$(DT/d)--I J ( S )  = K o AX(s) (2.9) 

where 

~(D r) ~-~ r 
K o - -  

TE o 

Introducing the nonintegral differential operator ~2~ d(Dr/d)-l/dt ~Dr/a)-I 
as the inverse Laplace transform of s ~Dr/d)-~, (2.9) may be written in space- 
time as 

d i d  T/d) -- 1 

dt(O~/d)-i J(t) = Ko AX(t) (2.10) 

which is a generalization of the fractional differential equation previously 
given in the elementary TEISI model ( D r =  1, 0 < d < 2). ~ This is the 
kinetic equation linking the only two macroscopic variables needed to 
describe the irreversible phenomenon under consideration. 

In contrast with other models which suggests a time dependance of the 
local kinetic constant in the fractal media, ~21'z2) the present proposal stresses 
the fundamental aspects involved by incorporating the interfacial charac- 
teristics into the fractional derivative in space-time. 
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The fractional derivative arises from the mathematical analysis and the 
model assumptions and it may be observed that it leads to a general input-  
output transfer function of the form 

AX(s)  1 1 (2.11) 
J(s) Ko s 1-(DT/a~ 

which involves a Curie-von Schweilder type of time relaxation mode r 
according in the space time to a t - "  function with n = Dr/d. 

If  the interface of exchange is considered as a constant one, that form 
might indeed be though of as a modification of the kinetics constant. r 

The major role played by the geometry, however, has been and will be 
emphasized in the literature with reference to a variety of experimental 
results. (15"z4-~6~ Particularly it may be noticed that when the driving force is 
of the form AX(t)  = Xo~(t) - X(t),  also called a marginal form, and when the 
linear fi transfer is a first-order fi transfer: J(t) ~- c dX(t)/dt(14'27~; the transfer 
function X(s)/Xo~(s) takes the form 

X(s)  1 
Xoo(s ) 1 + (roS) ~ (2.12) 

called the "Cole and Cole" form (28~ r 0 = (c/Ko) dm~. This result is especially 
important since, under these conditions, experimental data provide detailed 
information of the local irreversible events via r 0 even if the kinetics are 
carried out in complex media. (25'26~ 

The kinetic and thermodynamic consequences of such experiments are 
currently under investigation in order to obtain more comprehensive charac- 
terizations of the kinetics in the heterogeneous random media (electrodes, 
composite materials, catalysts.. .)J zS~ 

The preceding schematic analysis suggests an extension of the concept 
and formulation of the energy dissipation. The use of Sl( t  ) = J ( t ) ,  AX(t)  has 
been suggested elsewhere~15); however, this functional is only related to the 
spectral density of energy and to the correlation function of the forces. A 
more comprehensive description of the dissipation would be S 2 ( t ) =  
A(t)  �9 a(t), that is to say, 

d ~ - ~D T/d) 
222( 0 oc dtl_~T/a~ a(t) 

where a(t) is the traditional rate of the production of entropy. (14~ The total 
process might then be a nondissipative one, depending on the value of D r 
with respect t o  the fractal dimension, that is to say, depending on the 
topology of the space of dissipation with respect to the metric of the space of 
transfer. 
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3. DISTRIBUTED 6 TRANSFER 

In contrast with the 6 transfer [linear (Section 2) or not], the distributed 
transfer is characterized by a spatial distribution of the driving forces. The 
best-known example of such behavior is observed in diffusion processes. (29) 
The case of semi-infinite diffusion has already been treated elsewhere (3~ 
using the semiderivation which leads to the following equation(3~): 

d -  ~/2 
dt-'/2 J(t) = ~ AX(t) (3.1) 

where D is the diffusion coefficient. This equation is exactly the same as 
Eq. (2.10) with d = 2 (Peano interface) and D r = 1. This point of view may 
be generalized by considering some of distributed transfers in Euclidean 
space as equivalent to ~ transfers on a d:fractal interface, i.e., 

distributed transfer c5 transfer 

Euclidean space d:fractal space 

where [according to Eq. (2.10)] d: is the fractal dimension of the kinetic 
limitation of a 6 transfer, d I is not only a useful formalism artifice but may 
have an accurate geometrical meaning. (32) 

Thus the linear elementary event on the above d-fractal interface may 
be extended to a distributed process by using the linear ~5 transfer and by 
letting these be distributed by the d:fractal interface. According to the linear 
TEISI model equation, 

d(D r /a : )  - 1 

dt w~/a:)-I O(t) = 1AX(t)r (3.2) 

using 0(t), which is the local density of flow3; AX(t), the related macroscopic 
driving force; r, a constant originated in the molecular elementary event; d:, 
the fractal dimension of the local kinetic limitation; and D r, which is always 
the topological dimension of the space of the exchange of energy. 

Then, the reasoning of Section 2 may be employed without any change 
of the assumptions to give the following distributed TEISI model equation of 
the macroscopic through the d-fractal interface: 

d ( 1 / o ) - I  

dt~/o ~_~ s(t) = Ko ~X(t)  (3.3) 

3 We emphasize that in this case the fractional derivation is applied over the density of  flow, 
which means (i) the limiting event is not the transfer through the d-fractal interface but a 
lower-rate one, and (ii) the dissipative factor is located in the bulk and not on the d-fractal 
interface. 
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where J(t)  is the macroscopic flow; AX( t )  is the thermodynamic driving 
force; K 0 a constant, and 0 is now a (d, d:) function given by 

0 = dd: (3.4) 
DT(a + a:) -- aa: 

Equations (3.3) and (3.4) signify "Transfer through a d-fractal interface 
is driven by a complex process which is controlled by a d:fractal geometry 
imbedded in a d-fractal media." 

If D r = 1 and d : =  2, that is to say, if the ~ transfer through the d- 
fractal interface is driven by a diffusion process then 0 = 2 d / ( 2 -  d). This 
result was tested experimentally and found to give an accurate description of 
the diffusion of the "reactive species" to a d-fractal interface [chemical 
species diffusion, (33) phonons diffusion~18'19)]. In addition, 

If d : =  1, the simple 6-transfer equation is recovered. 
The general case where 2 > d: > 1 is found, for example, to give an 

accurate description of the kinetic control of the electrochemical transfer of 
the ionic species into a fractal solid state lattice when the electrolyte is 
partially crystallized. (34) As a result the distributed TEISI model is very 
useful in order to understand the laws of the behavior of any fractal 
composite structure. 

In addition the distributed TEISI model may be further generalized t o  
cases where the topological dimension D r of the energy transfer depends on 
the fractal dimension, i.e., D r = f ( d ) .  

Although the extended TEISI model presents a unified treatment of a 
variety of interfacial energy dissipation processes within a general kinetic- 
geometric framework, several problems remain to be examined for example 
the bulk dissipation of energy in nonreactive walls media (electrolyte in 
porous fractal media, amorphous phase in crystalline structure, etc .... ). As 
an approach to their solution it may be useful to postulate the validity of the 
distributed TEISI model. This point of view is currently tested in our 
laboratory in the case of solid state ionic percolation. 

A C K N O W L E D G M  ENTS 

We wish to thank Dr. P. Bro and B. Mandelbrot for fruitful discussions 
and friendly advices. 

REFERENCES 

1. J. Villermaux, G~nie de la rdaetion chimique. Conception et fonctionnement des r~aeteurs, 
Technique et Documentation (Lavoisier, Paris, 1982). 

2. R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts 
(Clarendon press, Oxford, 1975). 



Transfer Processes in Fractal Media 675 

3. J. J. Carberry, Applied Kinetics and Chemical Reaction Engineering (MacGraw-Hill, New 
York, 1976). 

4. R. de Levie, Advances in Electrochemistry and Electrochemical Engineering, Vol. 6, P. 
Delahay and C. W. Tobias, eds. (Interscience, New York, 1967). 

5. J. Newman, bibliography, Material and Molecular Research Division, Lawrence Berkeley 
Laboratory and Department of Chemical Engineering, University of California, Berkeley, 
California 94720. 

6. P. Le Goff, Cin+tique physique des r6actions chimiques h6t6rog~nes, in Techniques de 
l'ing6nieur, Ref. J. 1210, 1967. 

7. J. Newman and W. Tiedemann, Advances in Electroehemistry and Electrochemical 
Engineering, Vol. 11, H. Gericher and C. W. Tobias, eds. (Interscience, New York, 
1977). 

8. B. Mandelbrot, Les objects fraetals (Flammarion, Paris, 1975); Fractal, Form, Chance 
and Dimension (Freeman, San Francisco, 1977); The Fractal Geometry of Nature 
(Freeman, San Francisco, 1983). 

9. A. Le Mehaute and G. Crepy, in Salon de la Physique, Paris (I981); C. R. Acad. SeL 
(Paris) 294:835-838 (1982). 

10. P. Pfeifer and P. Avnir, J. Chem. Phys. 79(7):3558-3571 (1983). 
12. I. Prigogine, Physique, temps et devenir (Masson, Paris, 1980). 
13. R. Balescu, Equilibrium and Nonequilibrium Statistical Meehanics (Wiley-lnterscience, 

New York, 1975). 
14. I. Prigogine, Thermodynamique des phgnom~nes irrdversibles (Dunod, Paris, 1947); G. de 

Groot, Thermodynamics of irreversible processes (Elsevier, New York, 1962). 
15. A. Le Mehaute, A. de Guibert, M. Delaye, and C. Filippi, C. R. Aead. Sei. (Paris) 

294:835-839 (1982); A. Le Mehaute and G. Crepy, Solid State Ionics 9/10:17-30 
(1983). 

16. A. Blanc-Lapierre and B. Picinbono, Fonetions aldatoires (Masson, Paris, 1981); J. C. 
Gille, M. Pellegrin, and P. Decaulne, Th~orie et techniques des asservissements (Dunod, 
Paris, 1956). 

i7. L. Schwartz, Th~orie des distributions (Hermann, Paris, 1966). 
18. L. Fruchter, "Apropos  du contenu fractal de la reponse viscoelastique," D.E.A., 

Laboratoires de Marcoussis, internal report. Unpublished. 
19. L. Fruchter and A. Le Mehaute, to be published. 
20. J. Liouvitle, J. Ecote Polytech. 13:71 (1832); J. M. Guelfan and G. E. Chilov, Les 

distributions (Dunod, Paris, 1962); K. O. Oldham and J. S. Spanier, The Fractional 
Calculus (Academic Press, New York, 1974); B. Ross, Fractional Calculus and Its 
Applications A. Ross Dold, A. Exkmann, and B. Exkmann, eds. (Springer-Verlag, Berlin, 
1974). 

21. R. Kopelman, P. W. Ktymko, J. S. Newhouse and L. W. Anaker, Phys. Rev. 
29:3747-3748 (1984). 

22. P. Evesque, J. Phys. (Paris) 44:1217, 1224 (1983). 
23. E. Von Schweilder, Ann. Phys. (Leipzig) 24:711-714 (1907). 
24. A. Le Mehaute and G. Crepy, C. R. Aead. Sei. (Paris) 294:685 (I982); A. Le Mehaute 

and A. Dugast, J. Power Sources 9:359-364 (1983). 
25. A. Le Mehaute, three experimental notes in preparation. 
26. T. Hamaide, thesis, Lyon, 1983. 
27. K. J. Laidler, Reaction Kinetics (Pergamon Press, New York, 1963). 
28. K. S. Cole and R. H. Cote, J. Chem. Phys. 9:341-347 (1941). 
29. Y. Adda and J. Philibert, La diffusion dans les solides (INSTN/Press Universitaire de 

France, 1966). 



676 Le Mehaute 

30. K. B. Oldham and J. Spanier, J. Electroanal. Chem. 26:31-40 (1970); K. B. Oldham, 
Anal. Chem. 44:196-201 (1972); M. Grenness and K. B. Oldham, Ann. Chem. 
44:1121-1129 (1972); K. B. Oldham, Anal Chem. 45:39-43 (1973). 

31. R. L. Birke, Anal Chem. 45:2292-2998 (1973). 
32. A. Le Mehaute and G. Crepy, to be published. 
33. A. Le Mehaute and G. Crepy, Solid State lonies 9/10:17-30 (1983). 
34. A. Le Mehaute, G. Crepy, G. Marcellin, and T. Hamaide, EUCHEM Conference on 

Solid State Chemistry and Electrochemistry, Oxford, March 1984. 


